JEE Main 2024 Question Paper Solution Discussion Live JEE Main 2024 Question Paper Solution Discussion Live

JEE Advanced Maths Trigonometric Equations Previous Year Questions with Solutions

Students can find JEE Advanced previous year questions and solutions on trigonometric equations on this page. Students can expect questions from the trigonometric equations for the JEE Advanced exam. The important topics in trigonometric functions are solutions of trigonometric equations, trigonometric identities, greatest and least value of trigonometric expressions, domain and range of trigonometric functions, etc. Practising these solutions will definitely help students to get a better idea of the difficulty levels of the JEE Advanced exam.

Download Trigonometric Equations Previous Year Solved Questions PDF

Question 1: The positive integer value of n>3 satisfying the equation 1/sin(π/n) = 1/sin(2π/n) + 1/sin(3π/n)

(a) 8

(b) 6

(c) 5

(d) 7

Solution:

Given, 1/sin (π/n) = 1/sin (2π/n) + 1/sin (3π/n)

(1/sin (π/n) – 1/sin (3π/n)) = 1/sin (2π/n)

[sin 3π/n – sin π/n]/ (sin 3π/n sin π/n) = 1/sin 2π/n

Using the formula sin x – sin y = 2 cos(x + y) sin(x – y),

[(2 cos (2π/n) sin (π/n)/ sin (3π/n) sin (π/n)] sin (2π/n) = 1

[2 sin (2π/n) cos (2π/n)]/ sin (3π/n) = 1

Using the formula 2 sin A cos A = sin 2A,

sin (4π/n)/ sin (3π/n) = 1

sin (4π/n) = sin (3π/n)

sin(π – (4π/n)) = sin 3π/n

π – (4π/n) = 3π/n

π = (3π/n) + (4π/n)

π = 7π/n

So, n = 7

Hence option d is the answer.

Question 2: If A + B + C = 1800 then the value of tan A + tan B + tan C is

(a) ≥3√3

(b) ≥2√3

(c) > 3√3

(d) > 2√3

Solution:

Given A + B + C = 1800

So A + B = 180 – C

tan (A + B) = tan (180 – C)

(tan A + tan B)/(1 – tan A tan B) = -tan C

=> (tan A + tan B) = -tan C (1 – tan A tan B)

=> tan A + tan B + tan C = tan A tan B tan C …(i)

Use A.M ≥ G.M

=> (tan A + tan B + tan C)/3 ≥ (tan A tan B tan C)1/3

=> tan A tan B tan C ≥ 3 (tan A tan B tan C)1/3 (using (i))

Cubing both sides

tan2A tan2B tan2C ≥ 27

tan A tan B tan C ≥ 3√3

Hence option a is the answer.

Question 3: The number of values of θ in the interval (-π/2, π/2) such that θ ≠ nπ/5 for n = 0, ±1, ±2 and tan θ = cot 5θ as well as sin 2θ = cos 4θ

(a) 3

(b) 4

(c) 7

(d) 5

Solution:

Given tan θ = cot 5θ

= tan (π/2 – 5θ)

=> θ = nπ + π/2 – 5θ

=> 6θ = nπ + π/2

=> θ = nπ/6 + π/12 …(i)

sin 2θ = cos 4θ

=> 2 sin2 2θ + sin 2θ – 1 = 0

=> 2 sin2 2θ + 2sin 2θ – sin 2θ – 1 = 0

=> sin 2θ = -1 or sin 2θ = ½

=> 2θ = π/6 , 5π/6

=> θ = π/12 , 5π/12

So θ = -π/4, π/12 , 5π/12

θ takes 3 values.

Hence option a is the answer.

Question 4: For x ∈(0, π), the equation sin x + 2 sin 2x – sin 3x = 3 has

(a) infinitely many solutions

(b) three solutions

(c) one solution

(d) no solution

Solution:

Given that sin x + 2 sin 2x – sin 3x = 3 …(i)

Use sin 2x = 2 sin x cos x

And sin 3x = 3 sin x – 4 sin3 x

Equation (i) becomes sin x + 4 sin x cos x – 3 sin x + 4 sin3 x = 3

sin x(1 + 4 cos x – 3 + 4 sin2x) = 3

sin x(-2 + 4 cos x + 4(1-cos2x)) = 3

(-2 + 4 cos x + 4(1-cos2x)) = 3/sin x

(-2 + 4 cos x + 4(1-cos2x)) = 3 cosec x

-2 + 4 cos x + 4 – 4cos2x = 3 cosec x

(2 – (4 cos2x – 4 cos x +1) + 1) = 3 cosec x

3 – (2 cos x -1)2 = 3 cosec x

When x = π/2, RHS = 3

LHS = 3, at x = π/3.

LHS and RHS are not equal at the same value of x. Hence, no solution.

Hence option d is the answer.

Question 5: If 5(tan2 x – cos2 x) = 2cos 2x + 9, then the value of cos 4x is :

(a) 1/3

(b) 2/9

(c) -7/9

(d) -3/5

Solution:

Given that 5(tan2 x – cos2 x) = 2cos 2x + 9

(Use tan2x = sec2x – 1 and cos 2x = 2 cos2x – 1)

5(sec2x – 1 – cos2 x) = 2(2 cos2x – 1) + 9

5 sec2 x – 5 = 9 cos2 x + 7

Let cos2 x = t

(5 / t) = 9t + 12

9t2 + 12t – 5 = 0

t = 1/3 or – 5/3

t = 1/3 as t ≠ – 5/3

cos2 x = 1/3, cos 2x = 2cos2 x – 1 = -1/3

cos 4x = 2cos2 2x – 1

= (2/9) – 1

= -7/ 9

Hence option c is the answer.

Question 6: If √2 sin α/√(1 + cos 2α) = 1/7 and √((1 – cos 2β)/2) = 1/√10, α, β ∈ (0, π/2), then tan (α + 2β) is equal to

(a) 1

(b) -1

(c) 0

(d) 1/2

Solution:

We know cos 2x = 2 cos2x – 1

Also 1+cos 2x = 2 cos2x

Given that √2 sin α/√(1 + cos 2α) = 1/7

=> √2 sin α/√(2cos2 α) = 1/7

=> tan α = 1/7

Given √((1 – cos 2β)/2) = 1/√10

Use cos 2x = cos2x – sin2x in above equation

=> √((1 – cos2β + sin2β)/2) = 1/√10

=> √((sin2β + sin2β)/2) = 1/√10

=> √((2 sin2β)/2) = 1/√10

=> sin β = 1/√10

=> tan β = 1/3

We know tan 2β = (2 tan β)/(1- tan2β)

= 2(1/3)/(1 – 1/9)

= 3/4

We know tan (a+b) = (tan a + tan b)/(1 – tan a tan b)

So tan(α + 2β) = (tan α + tan 2β)/( 1 – tan α tan 2β)

= (1/7 + ¾)/(1 – (1/7) × (3/4))

= 25/25

= 1

Hence option a is the answer.

Question 7: Let the function f: (0, π) → R be defined by f(θ) = (sin θ + cos θ)2 + (sin θ – cos θ)4 . Suppose, the function f has a local minimum at θ precisely when θ ∈ {λ1 π, … , λr π}, where 0 < λ1< ⋯ < λr < 1.Then the value of λ1 + ⋯ + λr is

(a) 1/4

(b) -2

(c) 1

(d) 1/2

Solution:

Given that f(θ) = (sin θ + cos θ)2 + (sin θ – cos θ)4

= (sin2 θ + cos2 θ) + 2 sin θ cos θ + ((sin θ – cos θ)2)2

= 1 + sin 2θ + (sin2 θ + cos2 θ – 2sin θ cos θ)2

= 1 + sin 2θ + (1 – sin 2θ)2

= 1 + sin 2θ + 1+ sin2 2 θ – 2sin 2θ

= 2 + sin2 2 θ – sin 2θ

= sin2 2 θ – sin 2θ + 2

= (sin 2θ – ½)2 + 7/4

Given that f has a local minimum at θ.

θ ∈ [0, π]

2 θ ∈ [0, 2 π]

f(θ) min. when sin 2 θ = ½

So, 2 θ = π/6, 5π/6

θ = π/12, 5π/12

λ1 = 1/12 and λ2 = 5/12

λ1 + λ2 = 6/12 = 1/2

Hence option d is the answer.

Question 8: The number of distinct solutions of equation (5/4)cos22x + cos4x + sin4x + cos6x + sin6x = 2 in the interval [0, 2π] is

(a) 2

(b) 8

(c) 4

(d) 1

Solution:

(5/4)cos22x + cos4x + sin4x + cos6x + sin6x = 2

=> (5/4)cos22x + (cos2x)2 + (sin2x)2 + (cos2x)3 + (sin2x)3 = 2

=> (5/4)cos22x + (cos2x + sin2x)2 – 2 sin2x cos2x + (cos2x + sin2x)(sin4x + cos4x – sin2x cos2x) = 2

=> (5/4) cos22x + 1 – 2 sin2x cos2x + (sin4x+ cos4x – sin2x cos2x) = 2

=> (5/4) cos22x + 1 – 2 sin2x cos2x + (1 – 3 sin2x cos2x) = 2

=> (5/4) cos22x – 5 sin2x cos2x = 0

(5/4) – (5/4)sin22x – 5sin2x.cos2x = 0

=> (5/4) – (5/4)sin22x – (5/4)sin22x = 0

=> sin22x = ½

=> sin 2x = ± 1/√2

So x = π/8, 3π/8, 5π/8, 7π/8, 9π/8, 11π/8, 13π/8, 15π/8

Number of solutions in [0, 2π] is 8.

Hence option b is the answer.

Question 9: For what and only what values of α lying between 0 and π is the inequality sin α cos3α > sin3α cos α valid?

(a) α ∈ (0, π/4)

(b) α ∈ (0, π/2)

(c) α ∈ (π/4, π/2)

(d) none of these

Solution:

sin α cos3α > sin3α cos α

=> sin α cos3α – sin3α cos α > 0

=> sin α cos α(cos2α – sin2α) >0 ..(i)

We know cos2x – sin2x = cos 2x.

So (i) becomes

(½)2sin α cos α cos 2α > 0

=> (½) sin 2α cos 2α > 0

=> (¼) sin 4α > 0

=> sin 4α > 0

=> 4α ∈ (0, π) (given that 0<α<π)

=> α ∈ (0, π/4)

Hence option a is the answer.

Question 10: The solution of the equation tan θ. tan 2 θ = 1 is

(a) nπ + 5π/12

(b) nπ – π/12

(c) 2nπ ± π/4

(d) nπ ± π/6

Solution:

We know tan 2θ = 2 tan θ/(1 – tan2θ)

Given tan θ. tan 2θ = 1

=> tan θ.2 tan θ/(1 – tan2θ) = 1

=> 2 tan2θ = 1 – tan2θ

=> 3 tan2θ = 1

=> tan2θ = 1/3

=> tan θ = 1/√3

=> θ = nπ ± π/6

Hence option d is the answer.

Question 11: If sin θ = 3 sin (θ + 2α), then the value of tan (θ + α) + 2 tan α is

(a) 3

(b) 1

(c) 2

(d) 0

Solution:

Given that sin θ = 3 sin (θ + 2α)

=> sin (θ + α – α) = 3 sin (θ + α + α)

=> sin (θ + α) cos α – cos(θ + α) sin α = 3 sin (θ + α) cos α + 3 cos(θ + α) sin α

=> -2 sin (θ + α) cos α = 4 cos(θ + α) sin α

=>-sin (θ + α)/cos (θ + α) = 2 sin α/cos α

=> -tan (θ + α) = 2 tan α

=> tan (θ + α) + 2 tan α = 0

Hence option d is the answer.

Question 12: The value of tan 60 tan 420 tan 660 tan 780 is

(a) 1

(b) 4

(c) 2

(d) 0

Solution:

tan 60 tan 420 tan 660 tan 780 = (sin 60 sin 420 sin 660 sin 780)/(cos 60 cos 420 cos 660 cos 780)

= (cos 60 – cos 72)(cos 36 – cos 120)/(cos 60 + cos 72)(cos 36 + cos 120)

= (½ – sin 18)(cos 36 + ½)/ (½ + sin 18)(cos 36 – ½)

= [(½ – (√5 – 1)/4) ((√5+1)/4 + ½ )]/[(½ + (√5 – 1)/4) ((√5+1)/4 – ½ )]

= (3 – √5)(3 + √5)/(√5 +1)(√5 -1)

= (9-5)/(5-1)

= 4/4

= 1

Hence option a is the answer.

Question 13: The value of √3 cosec 200 – sec 200 is equal to

(a) -6

(b) 4

(c) 1

(d) 0

Solution:

√3 cosec 200 – sec 200 = √3/sin 200 – 1/cos 200

= (√3 cos 200 – sin 200)/sin 200 cos 200

= 4[(√3/2) cos 200 – ½ sin 200)/2 sin 200 cos 200

= 4[(sin 600 cos 200 – cos 600 sin 200)/sin 200]

= 4[ (sin (600-200))/sin 400]

= 4 sin 400/sin 400

= 4

Hence option b is the answer.

Question 14: The value of the expression (1 – 4 sin 100 sin 700)/2 sin 100 is

(a) -6

(b) 4

(c) 1

(d) 0

Solution:

(1 – 4 sin 100 sin 700)/2 sin 100 = (1 – 2(2 sin 100 sin 700))/2 sin 100

We know sin (90 – θ) = cos θ

And cos A – cos B = 2 sin (A+B)/2 sin (A-B)/2

(1 – 2(2 sin 100 sin 700))/2 sin 100 = [1 – 2(cos 600 – cos 800)]/2 sin (900 – 800)

= (1- 2 cos 600 + 2 cos 800)/2 cos 800

= (1 – 2(½) + 2 cos 800)/2 cos 800

= 2 cos 800/2 cos 800

= 1

Hence option c is the answer.

Question 15: Let a, b, c be three non zero real numbers such that the equation √3a cos x + 2b sin x = c, x belongs to [-π/2, π/2] has two distinct roots α and β with α + β = π/3. Then the value of b/a is

(a) 1

(b) 4/3

(c) 1/2

(d) 0

Solution:

Given that √3a cos x + 2b sin x = c

Divide by a, we get

√3 cos x + (2b/a) sin x = c/a …(i)

Since α and β are the roots of (i)

√3 cos α + (2b/a) sin α = c/a …(ii)

√3 cos β + (2b/a) sin β = c/a …(iii)

Subtract (iii) from (ii)

=> √3 (cos α – cos β) + (2b/a) (sin α – sin β) = 0

We know cos A – cos B = -2 sin (A+B)/2 sin (A-B)/2

Also sin A – sin B = 2 cos (A+B)/2 sin (A-B)/2

=> √3 (-2 sin (α+β)/2 sin (α-β)/2) + (2b/a) (2 cos (α+β)/2 sin (α-β)/2) = 0

Given α + β = π/3

=> √3 (-2 sin π/6 sin (α-β)/2) + (2b/a) (2 cos π/6 sin (α-β)/2) = 0

=> √3 (-2 ×½ × sin (α-β)/2) + (2b/a) (2×√3/2 sin (α-β)/2) = 0

=> √3 ( sin (α-β)/2) = (2b/a) (√3 sin (α-β)/2)

=> 1 = 2b/a

=> b/a = 1/2

Hence option c is the answer.

Trignometry – Video Lesson

Solving Trignometric Functions

Also Read

JEE Main Maths Trigonometry Previous Year Questions With Solutions

 

Comments

Leave a Comment

Your Mobile number and Email id will not be published.

*

*